021-31021022 ;13032137192


常规三代全长引物列表

测序类型引物名称引物序列区域文献备注

细菌16S rRNA

27F5’-AGAGTTTGATCMTGGCTCAG-3’

16s V1-V9

全长1.5k

[1]Pacbio 平台

1492R

5’- CRGYTACCTTGTTACGACTT-3’

真菌ITSITS15'-CTTGGTCATTTAGAGGAAGTAA-3’

ITS 全长

700bp

[2]Pacbio 平台

ITS4

5'-TCCT CCGC TTAT TGAT ATGC-3’

古菌A1F5′-GKTTGATCCYGSCRGAG-3′16S全长1.5k[3]Pacbio 平台

1490R

5′-GGYTACCTTGTTACGACTT-3’



常规引物列表

测序类型引物名称引物序列区域文献备注
细菌16S rRNA341F

5’-CCTAYGGGRBGCASCAG-3’

16s V3-V4

[4]

PE250平台
806R

5’-GGACTACNNGGGTATCTAAT-3’

细菌16S rRNA515F

5’- GTGCCAGCMGCCGCGG-3’

16s V4-V5

[5]

PE250平台
907R

5’- CCGTCAATTCMTTTRAGTTT-3’

细菌16S rRNA515F

5’- GTGCCAGCMGCCGCGG-3’

16s V4

[6]

PE250平台
806R

5’- GGACTACHVGGGTWTCTAAT-3’

细菌16S rRNA799F

5’- AACMGGATTAGATACCCKG-3’

16s V5-V6

[7]

PE250平台
1115R

5’- AGGGTTGCGCTCGTTG-3’

真菌ITS

ITS1F

5’- CTTGGTCATTTAGAGGAAGTAA-3’

ITS1

[8]

PE250平台

ITS2R

5’- GCTGCGTTCTTCATCGATGC-3’

真核18S

TAReuk454FWD1

5’-CCAGCASCYGCGGTAATTCC-3’

18s V4

[9]

PE250平台

TAReukREV3

5’-ACTTTCGTTCTTGATYRA-3’

古菌

Arch519F

5’- CAGCCGCCGCGGTAA-3’

V4-V5

[10]

PE250平台

Arch915R

5’- GTGCTCCCCCGCCAATTCCT-3’

鱼类(海水)

MiFish_U-F

5’-GTTGGTAAATCTCGTGCCAGC-3’

eDNA

12S rRNA

[11]

PE150平台

MiFish_U-R

5’CATAGTGGGGTATCTAATCCTAGTTTG-3’

鱼类(淡水)

Tele02_F

5′-AAACTCGTGCCAGCCACC-3′

eDNA

12S rRNA

[12]

PE150平台

Tele02_R

5′-GGGTATCTAATCCCAGTTTG-3′

真核COI

MlCOIintF

5’GGWACWGGWTGAACWGTWTAYC

CYCC-3’

eDNA

[13]

PE250平台

JghHCO2198

5’-TAIACYTCIGGRTGICCRAARAAYCA-3’

产甲烷菌

Met86F

5’- GCTCAGTAACACGTGG-3’

产甲烷菌

[14]

Pacbio 平台

Met1340R

5’-CGGTGTGTGCAAGGAG-3’

固氮菌

NifH1F

5’- TGYGAYCCNAARGCNGA -3’

固氮细菌

[15]

PE250平台

NifH2R

5’- ADNGCCATCATYTCNCC-3’

丛枝真菌

AMV4.5NF

5′- AAGCTCGTAGTTGAATTTCG-3’

SSU

300bp

[16]

PE250平台

AMDGR

5′-CCCAACTATCCCTATTAATCAT-3’



非常规引物列表

测序类型引物名称引物序列区域文献备注
真核18S1380F5’-CCCTGCCHTTTGTACACAC -3’18s V9[17]PE250平台
1510R5’-CCTTCYGCAGGTTCACCTAC-3’
真核18S0817F5’-TTAGCATGGAATAATRRAATAGGA-3'18S V5-V7[18]PE250平台
1196R5'-TCTGGACCTGGTGAGTTTCC-3'
真核18SSSU_FO45’-GCTTGTCTCAAAGATTAAGCC-3’18S V1-V2[19]PE250平台
SSU_R225’-GCCTGCTGCCTTCCTTGGA-3’
古菌ArchU519F5’-CAGYMGCCRCGGKAAHACC-3’Arch 16s V4[20]PE250平台
Arch806R5’-GGACTACNSGGGTMTCTAAT-3’

氨氧化细菌

amoA-1F5'-GGGGTTTCTACTGGTGGT-3'氨氧化细菌[21]PE250平台单端分析
a moA-2R5'-CCCCTCKGSAAAGCCTTCTTC-3'

氨氧化古菌


Arch-amoAF5’-STAATGGTCTGGCTTAGACG-3’氨氧化古菌[22]PE250平台单端分析
Arch-amoAR5’-GCGGCCATCCATCTGTATGT-3’

线虫


NF15’-GCTGGTGCATGGCCCTTCTTACTT-3'线虫18S[23]PE250平台
18Sr2bR5'-TACAAAGCGCAGCGACCTAAT-3'
反硝化细菌

(nirS)

Cd3aF5’-GTSAACGTSAAGGARACSGG-3’nirS[24]PE250平台
R3cd5’-GASTTCGGRTGSGTCTTGA-3’

厌氧真菌

MN1005’-TCCTACCCTTTGTGAATTTG-3’厌氧真菌[25]PE250平台
MNGM2C5’-CTGCGTTCTTCATCGTTGCG-3’
产甲烷古菌Met86F5’- GCTCAGTAACACGTGG-3’产甲烷古菌[26]PE250平台
Met471R5’-GWRTTACCGCGGCKGCTG-3’

反硝化

细菌(nirK)

nirK583F5’- TCATGGTGCTGCCGCGKGACGG-3’nirK[27]PE250平台
nirK909R5’-GAACTTGCCGGTKGCCCAGAC-3’

反硝化细

菌(nosZ)

nosZ-F5’-CGYTGTTCMTCGACAGCCAG-3’nosZ[28]PE250平台
nosZ1622R5’-CGSACCTTSTTGCCSTYGCG-3’

反硝化细

菌(cnorB)

cnorB2F5’- GACAAGNNNTACTGGTGGT - 3’cnorB[29]PE250平台
cnorB6R5’- GAANCCCCANACNCCNGC-3’

厌氧氨氧化菌

AMX368F5’-TTCGCAATGCCCGAAAG-3’Anammox[30]PE250平台
AMX820R5’-AAAACCCCTCTACTTAGTGCCC-3’

硫酸盐还原菌

APS1F5’-TGGCAGATCATGATYMAYGG-3’aprA[31]PE250平台
APS4R5’- GCGCCAACYGGRCCRTA- 3’

藻类

Cyan359F5’-GGGGAATYTTCCGCAATGGG- 3’chloroplasts[32]PE250平台
Cyan781R5’-GACTACWGGGGTATCTAATCCCWTT- 3’

真核18S

528F5’-GCGGTAATTCCAGCTCCAA-3’18s V4 350bp[33]PE250平台
706R5’-AATCCRAGAATTTCACCTCT-3’

大型藻类

F5’-CCAGCASCYGCGGTAATTCC- 3’18S V9[34]PE150平台
R5’-CCTTCYGCAGGTTCACCTA- 3’
大型藻类Euka02-F5’-TTTGTCTGSTTAATTSCG- 3’18S V7[34]PE150平台
Euka02-R5’-CACAGACCTGTTATTGC- 3’

注明:功能引物为非常规引物,需要收合成费用;

甲方可以提供特殊引物,但是需要经过乙方的确认后收费合成。

参考文献

参考文献

副标题

1. Rosselli R., et al.(2015) Microbial immigration across the mediterranean via airborne dust. Scientific Reports, 5:16306, doi: 10.1038/srep16306.

2. Cheung, M., Au, C., Chu, K. et al. Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing. ISME J 4, 1053–1059 (2010). https://doi.org/10.1038/ismej.2010.26.

3. Lam TYC, Mei R, Wu Z, Lee PKH, Liu WT, Lee PH. Superior resolution characterisation of microbial diversity in anaerobic digesters using full-length 16S rRNA gene amplicon sequencing. Water Res. 2020 Jul 1;178:115815. doi: 10.1016/j.watres.2020.115815. Epub 2020 Apr 18. PMID: 32380296.

4. Zakrzewski M.,et al. (2012) Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. Journal of Biotechnology, 158: 248-258.

5. Xiong J., et al.(2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environmental Microbiology 14(9): 2457–2466.

6. Liang Y., et al. (2015) Long-term soil transplant simulating climate change with latitude

7. significantly alters microbial temporal turnover The ISME Journal, 9: 2561-2572.

8. Jonathan W. Leff, Noah Fierer. Bacterial communities associated with the surfaces of fresh

9. fruits and vegetables. PLOS one, 8(3):e59310.

10. Mueller R. C., et al. (2014) Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest ,The ISME Journal ,8:1548–1550.

11. Logares R., et al. (2012) Diversity patterns and activity of uncultured marine heterotrophic   flagellates unveiled with pyrosequencing. The ISME Journal, 6:1823–1833.

12. Thiago M.A. Santos, et al. (2011) Microbial diversity in bovine papillomatous digital dermatitis in Holstein dairy cows from upstate New York. FEMS Microbiol Ecol, 79:518–529.

13. Miya M, Sato Y, Fukunaga T, et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species[J]. Royal Society open science, 2015, 2(7): 150088.

14. Zhang, S., Lu, et al. (2020). Assessment of fish communities using environmental DNA: Effect of spatial sampling design in lentic systems of different sizes. Molecular Ecology Resources, 20(1), 242-255.

15. Leray, M., Yang, J. Y., et al. (2013). A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metzoan diversity: Application for characterizing coral reef fish gut con‐ tents. Frontiers in Zoology, 10, 34.

16. Wright D.G.,Omoregie E. O., et al. (2004) Molecular Diversity of Rumen Methanogens from Sheep in Western Australia. Appl Environ Microbiol, 70(3): 1263-1270.

17. Omoregie E.O., et al. (2004) Determination of Nitrogen-Fixing Phylotypes in Lyngbya sp.and Microcoleuschthonoplastes Cyanobacterial Mats from Guerrero Negro, Baja California, Mexico. Appl Environ Microbiol, 70(4): 2119–2128.

18. Helgason, T., Daniell, T.J., Husband, R., Fitter, A.H., Young, J.P., 1998. Ploughing up the wood-wide web? Nature 394, 431.

19. Stoeck T., Behnke A., et al. (2009) Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities. BMC Biology, 7:72 doi:10.1186/1741-7007-7-72.                                       

20. Rousk J., et al. (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 4:1340-1351.

21. Cerqueira T., et al. (2015) Microbial diversity in deep-sea sediments from the Menez Gwen hydrothermal vent system of the Mid-Atlantic Ridge. Marine Genomics, doi:10.1016/j.margen.2015.09.001

22. Saminathan T., et al. (2018) Metagenomic and metatranscriptomic analyses of diverse watermelon cultivars reveal the role of fruit associated microbiome in carbohydrate metabolism and ripening of mature fruits. Frontiers in Plant Science, 9(4), doi:10.3389/fpls.2018.00004.

23. Ella W., Mat S., et al. (2011) Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning. The ISME Journal, 5: 1213-1225.

24. Abell G.C.J., et al. (2010) Archaeal ammonia oxidizers and nirS-type denitrifiers dominate sediment nitrifying and denitrifying populations in a subtropical macrotidal estuary. The ISME Journal, 4:286-300.

25. Kenmotsu H, Takabayashi E, Takase A, Hirose Y, Eki T. Use of universal primers for the 18S ribosomal RNA gene and whole soil DNAs to reveal the taxonomic structures of soil nematodes by high-throughput amplicon sequencing. PLoS One. 2021 Nov 15;16(11):e0259842. doi: 10.1371/journal.pone.0259842. PMID: 34780544; PMCID: PMC8592498.

26. Faulwetter J.K., et al. (2011) Floating treatment wetlands for domestic wastewater treatment. Water Scuence & Technology, 64(10):2089-2095.

27. Khejornsart P., et al. (2011) Diversty of anaerobic fungi and rumen fermentation characteristic in swamp buffalo and beef cattle fed on different diets. Livestock Science, 139:230-236

28. Cersosimo L. M., et al. (2014) Examination of the Rumen Bacteria and Methanogenic Archaea of Wild Impalas (Aepyceros melampus melampus) from Pongola, South Africa. Microb Ecol, doi:10.1007/s00248-014-0521-3

29. Ji G. D., et al. (2012) Distribution patterns of denitrification functional genes and microbial floras in multimedia constructed wetlands. Ecological Engineering, 44:179-188.

30. Throback I.N., et al. (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiology Ecology, 49: 401-417.

31. Lu H.J., et al. (2014) Microbial ecology of denitrification in biological wastewater treatment.

32. Water Research, doi: 10.1016/j.watres.2014.06.042.

33. Wang S.L., et al. (2015) Comparative analysis of two 16S rRNA gene-based PCR primer sets provides insight into the diversity distribution patterns of anammox bacteria in different environments. Methods and Protocols, 99: 8163-8176.

34. Blazejak A., et al. (2006) Phylogeny of 16S rRNA, Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase, and Adenosine 5 -Phosphosulfate Reductase Genes from Gammaand Alphaproteobacterial Symbionts in Gutless Marine Worms (Oligochaeta) from Bermuda and the Bahamas.Appl Environ Microbiol, 72(8): 5527-5536.

35. Deng S.Q.,et al. (2016) Use of quantitative PCR with the chloroplast gene rps4 to determine moss abundance in the early succession stage of biological soil crusts. Biol Fertil Soils, doi: 10.1007/s00374-016-1107-7.

36. Cheung, M., Au, C., Chu, K. et al. Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing. ISME J 4, 1053–1059 (2010). https://doi.org/10.1038/ismej.2010.26.

37. Ortega A, Geraldi NR, Díaz-Rúa R, Ørberg SB, Wesselmann M, Krause-Jensen D, Duarte CM. A DNA mini-barcode for marine macrophytes. Mol Ecol Resour. 2020 Jul;20(4):920-935. doi: 10.1111/1755-0998.13164. Epub 2020 May 16. Erratum in: Mol Ecol Resour. 2021 Apr;21(3):1000. PMID: 32279439.