微生物多样性测序三代全长扩增子宏基因组测序宏基因组Binning分析宏基因组抗性基因测序宏基因组元素循环测序高宿主污染去除宏基因组项目HiC-Meta宏基因组三代全长宏基因组宏转录组差异表达测序环境宏病毒组测序医学宏病毒组测序动植物基因组Denovo测序细菌基因组测序项目真菌基因组测序项目病毒基因组测序项目简化基因组遗传图谱简化基因组GWAS测序BSA混池测序基因组SSR开发基因组重测序真核有参转录组测序真核无参转录组测序原核链特异性转录组测序全长转录组(有参_无参)测序LncRNA测序Small RNA测序互作转录组测序比较转录组测序Meta-Barcoding(eDNA)技术研究5R 16S rRNA微生物多样性绝对定量 Spike-in种质资源数字化解决方案转座子插入测序(Tn-seq)PlantArray植物生理组平台UMI-RNA-seq技术染色体级别基因组组装Hi-C建库叶绿体、线粒体基因组测序高通量土壤生物检测Astral蛋白质组学植物单细胞核转录组动物单细胞核转录组动物单细胞转录组单菌株单细菌转录组人肠道单细菌转录组10x单细胞转录组单细胞转录组(SMART)测序靶向代谢组分析非靶向代谢组分析ATAC-seqChip-seqRip-seq全基因组甲基化分析扩增子引物列表资料下载送样指南客户文章列表
021-31021022 ;13032137192

产品介绍

宏基因组(metagenome是指特定环境中全部生物(微生物)遗传物质的总和。宏基因组测序以特定环境中的整个微生物群落作为研究的对象,不需对微生物进行分离培养,而是提取环境微生物总DNA进行研究。其摆脱了传统研究中微生物分离培养的技术限制,在基因组水平解读微生物群体的多样性和丰度,探索微生物与环境及宿主之间的关系。目前,第二代高通量测序技术在宏基因组的研究上已被广泛应用。第二代高通量测序平台具有通量高、准确性高、速度快、信息全等特点,加快了宏基因组测序在鉴定低丰度的微生物群落,挖掘更多基因资源方面的应用。



分析流程

1681795327874.jpg



技术参数


实验策略

测序量

项目周期

400bp左右小片段文库

常规 10G-20G raw data

50个工作日



技术特色

  • 不依赖于微生物的分离培养,克服了传统的纯培养方法的技术限制,为研究和开发利用占微生物种类99%以上的未可培养的微生物提供了一种新的途径和良好的策略;

  • 可以得到环境中丰度较低的,为研究低丰度微生物提供了途径;

  • 引入了宏观生态的研究理念,对环境中微生物菌群的多样性、功能活性等宏观特征进行研究,可以更准确地反应出微生物生存的真实状态

  • 11项目服务,直接对接生信分析师,没有中间环节,沟通更高效

  • 多组学关联分析,可关联代谢组等研究结果,全方面深化研究。


送样要求


样品类型

送样要求

保存及运输

常规土壤

采样时应去除地表杂质,根据需要挖取相应深度(如 5~20 cm)的土壤,置于冰上运至实验室。去除可见杂质,建议过2 mm 无菌筛网。同一样方多点样本等量混合均匀后取 5~10 g,保存无菌 EP 管中。

样本-80℃或液氮中长期保存,干冰运输
根际土壤

矮小植物:收集植物植株,去除根部大块土壤;摇动植株去除松散土壤,使用无菌刷子收集根部附着紧密的土壤;同一样方多点样本等量混合均匀,过2mm筛后,分装至2mL或更大体积的EP管或冻存管中;每管土壤含量大概0.25~0.5g,需保证送样量在1~2g

高大林木:采集地面下10-20cm根际土壤,置于冰上运至实验室。去除可见杂质,建议过2-5 mm 无菌筛网。同一样方多点样本等量混合均匀后取 5~10 g,保存无菌 EP 管中。

水体

采样后进行滤膜过滤,选择合适孔径的滤膜,对于澄清水体或者略浑浊水体,选用0.22μm 或者 0.45μm 的滤膜,取样体积大于 5L;对于浑浊水体,建议先用3-4cm 滤膜过滤一遍,再用小孔径的滤膜过滤;送样量:滤膜 1-2 张;水体泥样的采集提供大于 5g 样本。

活性污泥
地表沉积物

活性污泥:从活性污泥装置中取大于 10 ml 的悬浮污泥样本(约 5-10 g 沉降物),保存无菌 EP 管中,放入液氮或置于冰上,立即运至实验室。若液态污泥样本沉降物较少,可适当增加取样量。

水体/地表沉积物:取距离水底/地表 0-10 cm(具体按实验需要而定)的沉积物 5~10 g,保存无菌取样袋或EP 管中,置于冰上运送至实验室。

空气

使用空气抽滤机,使空气通过 0.22 μm 滤膜,滤膜上有可见覆盖物(过滤时间越长,收集的空气中的灰尘越多,菌数量越多),收集完成后取下滤膜。滤膜置于冻存管中,液氮速冻,干冰寄送到实验室。

粪便

无菌牙签或用无菌勺挖取粪便中段没有接触空气和地面的部分,挖取一满勺(3-5 g)。小鼠至少 3-5 粒粪便。将已取的粪便样品分装至2mL EP管(无菌)或冻存管(无菌)中,每管粪便量为0.5~2g,每个样品分装2~3管备份。

肠道内容物

在实验对象死亡后,无菌条件下,取出整个肠道,用无菌解剖刀切取所需肠段的,用无菌手术刀挖取内容物 ,立即放在冰上进行分装并标记,分装至2mL EP管(无菌)或冻存管(无菌)中,每管组织量为0.5~2g,每个样品分装2~3管备份



分析示例

宏基因组测序.png



部分凌恩客户文章


发表时间文章标题杂志名影响因子合作单位
2024Early‑life ruminal microbiome‑derived indole‑3‑carboxaldehyde and prostaglandin D2 are efective promoters of rumen developmentGenome Biology17.906南京农业大学
2023Lake plastisphere as a new biotope in the Anthropocene: Potential pathogen colonization and distinct microbial functionality

Journal of

Hazardous Materials

13.6中国农业大学
2022Persulfate-based strategy for promoted acesulfame removal during sludge anaerobic fermentation: Combined chemical and biological effects

Journal of

Hazardous Materials

13.6河海大学
2024Simultaneous achievement of removing bensulfuron-methyl and reducing CO2 emission in paddy soil by Acinetobacter YH0317 immobilized boron-doping biochar

Journal of

Hazardous Materials

13.6中国科学院
2024Insights into microbial contamination and antibiotic resistome traits in pork wholesale market: An evaluation of the disinfection effect of sodium hypochlorite

Journal of

Hazardous Materials

13.6浙江省农业科学院
2022The neglected effects of polysaccharide transformation on sludge humification during anaerobic digestion with thermal hydrolysis pretreatmentWater Research13.4同济大学
2023Performance and mechanisms of urea exposure for enhancement of biotransformation of sewage sludge into volatile fatty acids

Bioresource

Technology

11.4安徽工业大学
2024Deciphering Microbe-Mediated Dissolved Organic Matter Reactome in Wastewater Treatment Plants Using Directed Paired Mass DistanceEnviron Sci Technol11.4重庆大学
2022Dietary selection of metabolically distinct microorganisms drives hydrogen metabolism in ruminantsISME11.217

中国科学院

亚热带农业研究所

2024Bio-formulated chitosan nanoparticles enhance disease resistance against rice blast by physiomorphic, transcriptional, and microbiome modulation of rice (Oryza sativa L.)

Carbohydrate

Polymers

11.2浙江大学生物技术研究所
2024Insight of persulfate-based treatments induced stable volatile fatty acids promotion during waste activated sludge anaerobic fermentation in semi-continuous-flow reactors: Focusing on variations of substrate and microbial functional profiles

Journal of Cleaner

Production

11.1安徽工业大学
2024Deterioration of sludge characteristics and promotion of antibiotic resistance genes spread with the co-existing of polyvinylchloride microplastics and tetracycline in the sequencing batch reactor

Science of the Total

Environment

10.754辽宁师范大学
2023Biodegradation of soil agrochemical contamination mitigates the direct horizontal transfer risk of antibiotic resistance genes to crops

Science of the Total

Environment

9.8华南农业大学
2023Converting food waste into high-value medium chain fatty acids and long chain alcohols via chain elongation with an internally produced electron donorGreen Chemistry9.8悉尼理工大学
2024New insights into functional divergence and adaptive evolution of uncultured bacteria in anammox community by complete genome-centric analysis

Science of the Total

Environment

9.8重庆大学
2021Metagenomic approach reveals the fates and mechanisms of antibiotic resistance genes exposed to allicins during waste activated sludge fermentation: Insight of the microbial community, cellular status and gene regulationBioresour Technol9.642华东师范大学
2021Effects of persulfate treatment on the fates of antibiotic resistance genes in waste activated sludge fermentation process and the underlying mechanismBioresour Technol9.642华东师范大学
2022Linkages of volatile fatty acids and polyhexamethylene guanidine stress during sludge fermentation: Metagenomic insights of microbial metabolic traits and adaptation

Chinese

Chemical Letters

9.1河海大学
2022Reduction of Redox Potential Exerts a Key Role in Modulating
Gut Microbial Taxa and Function by Dietary Supplementation of
Pectin in a Pig Model

Microbiology

Spectrum

9.043南京农业大学
2022Different Characteristics in Gut Microbiome between Advanced Adenoma Patients and Colorectal Cancer Patients by Metagenomic Analysis

Microbiology

Spectrum

9.043

浙江省大学医学院

第二附属医院

2022Improved Assembly of Metagenome-Assembled Genomes and Viruses in Tibetan Saline Lake Sediment by HiFi Metagenomic Sequencing

Microbiology

Spectrum

9.043

中国科学院

南京地理与湖沼研究所

2022Reduction of Redox Potential Exerts a Key Role in Modulating Gut Microbial Taxa and Function by Dietary Supplementation of Pectin in a Pig Model

Microbiology

Spectrum

9.043南京农业大学
2023Microbial community and gene dynamics response to high concentrations of gadolinium and sulfamethoxazole in biological nitrogen removal system
Chemosphere8.8合肥工业大学
2019Active harvesting enhances energy recovery and function of electroactive microbiomes in microbial fuel cellsApplied Energy8.426哈尔滨工业大学
2019Nitrogen removal by mix-cultured aerobic denitrifying bacteria isolated by ultrasound: Performance, co-occurrence pattern and wastewater treatment

Chemical

Engineering

Journal

8.355西安建筑科技大学
2019Sludge age impacted the distribution, occurrence state and structure of organic compounds in activated sludge and affected the anaerobic degradability

Chemical

Engineering

Journal

8.355同济大学
2023Assessing the effects of aquaculture on tidal flat ecological status using multi-metrics interaction-based index of biotic integrity (Mt-IBI)

Environmental

Research

8.3河海大学

电 话:021-31021022

            13032137192

邮 箱:lab@biozeron.com


上海凌恩生物科技有限公司(简称“凌恩生物”)成立于2014年,是一家从事组学科研技术服务的高新技术企业。凌恩生物拥有完备的组学测序技术平台,业务板块涉及组学研究的多个领域方向。截至2024年,凌恩生物已成立分公司或分支机构6家,服务范围辐射全球。

       以打造高品质测序及生物信息分析研发服务团队为目标,凌恩生物注重创新、时刻关注科研需求,先后研发了包括eDNA Metabarcoding,宏基因组元素循环分析,宏基因组抗性基因分析,高宿主污染去除宏基因组,宏转录组在内的微生态系列特色产品,备受广大科研工作者关注。凌恩技术团队参与的项目成果也多次发表在《Nature》《Cell》《PNAS》等国际高端学术期刊上秉持专业务实,追求卓越的理念,凌恩生物将满怀信心、迎接挑战,坚持应用新技术,研发新产品,助力科研。

上海凌恩生物科技有限公司
SHANGHAI BIOZERON BIOTECHNOLOGY CO.,LTD
地    址:上海市嘉定工业区兴贤路1180号7幢2层